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A B S T R A C T   

The geometric tolerancing (GPS or GD&T) has increasing importance in machine design, manufacturing and 
measuring. The geometric tolerances define the deviation of the different kinds of geometric elements in more 
sophisticated way, than dimensional tolerances. Nevertheless, the application of them requires more wariness in 
design process, manufacturing process planning and measuring. The key element is the measuring, when the 
requirements have to be inspected according to the standards, and striving to the maximal productivity and 
accuracy. The paper presents a new method to evaluate the flatness deviation by limited number of measured 
points and it uses regression analysis based on partial point sets. The method considers the observation, than the 
number of measured points increases the evaluated flatness values. The article presents the new method, the 
results of test, which support it and the result of verification tests also.   

1. Introduction 

A machine part has several properties, which are defined based on 
the purpose and working properties and expectation. Beside the shape, 
size and material, the tolerances are the most important properties. The 
tolerancing is a very complex design task, where lot of circumstances 
have to be considered, not only the design purposes, but the 
manufacturing, assembly, measuring, maintenance and cost. 

The tolerancing activity covers the macro and micro geometry. In 
case of macro geometry, the dimensional tolerances and the geometric 
tolerances can be applied. The dimensional tolerance means the toler-
ance of distances, diameters, radius etc. The geometric tolerances mean 
the possible error of geometric elements, like line, circle, cylinder, and 
plane. The geometric tolerances are defined by standards [1,2]. The 
application of geometric tolerances has several aspects. The first is the 
notation in the shop drawing, the second is the functional justification, 
the third is the manufacturing aspect and the fourth is the measuring 
aspect. The standards describe the first level only. 

Tolerances generate requirements for the manufacturing and 
measuring process, and through the parameters of manufacturing 
methods the different kind of errors are defined and controlled. Sheth 
and George [3] presents the effect of the process parameters on the 
flatness in case of face milling. Nowakowski et al. [4] investigates the 
slot milling technology, and present the effect of the milling parameters 
and milling strategies on the flatness, parallelism and perpendicularity. 
The productivity is assessed too. Wang and So [5] presents the effect of 
the process parameters of grinding to the micro (surface roughness) and 

micro (flatness) parameters. The ball-burnishing can evolve the micro 
accuracy of the surface too. Based on the result of Kovács et al. [6] the 
path parameter of the process modifies not only the surface roughness 
and the micro hardness, but the flatness error too. 

The result of the manufacturing can be controlled by measuring. The 
measuring of geometric error has several parameters, which has influ-
ence to the measured value. The first step of the evaluation process is to 
measure the coordinates of the points of the surface. Kawalec and 
Magdziak [7] found, then the higher number of measured points im-
proves the measured geometric error in case of free form surfaces. La-
kota and Görög [8] presents the effect of number of measured points on 
the measured flatness error. A unified scanning method was used, and it 
was found, that not only the number of points increase the flatness, but 
the scanning direction has importance too. Moulai-Khatir et al. [9] 
presents the effect of the investigated points and the type of evaluation 
of flatness. 

The type of the measuring device (layout, design, size, accuracy) has 
an important role too. It can be a coordinate measuring machine, a 
measuring arm, or different kind of scanning devices. In case of contact 
method, the type of the probe is an important feature. It can be a touch 
probe or a scanning head. The circumstances of the coordinate mea-
surement have influence on the results, as Štribac et al. [10] presents. 
The position of the workpiece, the temperature and the size of the tip 
have the largest effects on the roundness. The environment (tempera-
ture, vibration etc.) has effect on the result of the measuring process too. 
Moroni and Petro [11] presents the process of inspection planning in a 
wide content, and several aspects of coordinate measurement are 
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described, like the point sampling strategies, probe configuration and 
the path of the probe. 

The next character of the process is the point sampling, which defines 
the number of points and their distribution. The number of measured 
points and the point sampling strategy is an important part of the in-
spection planning [11]. There are three types of point sampling methods 
[12]. In case of (1) blind sampling strategies the sampling pattern is 
defined before the measuring, and does not change from part to part. 
The uniform coverage, the random strategy, the stratified coverage, the 
quasi random strategies (like Hammersley or Halton-Zeremba), ISO 
strategies and different kind of profile extraction methods form this 
group. The (2) adaptive sampling strategy is not a predefined strategy. 
Based on a starting sample set, considering criterions the adaptive 
method chooses the next sampling point till the stop condition. The (3) 
process based sampling methods consider manufacturing information in 
order to define the best point pattern (Fig. 1). 

The calculation method has effect on the geometric error value. 
Based on measured points the form and position tolerances can be 
evaluated, but several mathematical methods and their implementations 
can be used. Beside the white-box methods, black-box methods can be 
used too, like genetic algorithm or different search algorithms [13,14]. 
The most often used white-box methods are the following:  

• Least square (LS) method, when the regression geometry is defined 
based on points by minimizing the distance of the points from the 
regression geometry.  

• Minimum zone (MZ) method, when the position and orientation of 
the two parallel investigation elements is optimized by minimizing 
the distance between the two objects.  

• Envelope method (EM), when a cover geometric feature is located to 
3 points, and every other points there are under (or inside) the 
feature. The distance of the farthest point is the geometric error. 
During the evaluation, a cover geometric element has to be found 
where this distance is the smallest. 

The Fig. 2 summarizes the parameters in form of Ishikawa diagram, 
which have influence on the geometric errors. During the manufacturing 
and measuring process planning these parameters have to be considered. 

The flatness error describes the deviation of a plane surface from the 
theoretical plane. The flatness tolerance defines the permissible level of 
this error. The flatness error is the distance of two parallel planes, which 
limit the produced flat surface (Fig. 3) [1]. The two parallel planes have 
3 deg of freedom (DOF), one linear in vertical direction and two angular 
DOFs in the horizontal plane. During the calculation of flatness error, the 
position of the parallel planes should be defined. 

Based on the definition of the standard, the flatness error can be 
calculated as the maximum distance between a plane and points of the 
produced surface. If one point of a plane is P0 = [P0x; P0y; P0z] and the 
normal vector is N = [Nx; Ny; Nz] the distance of any point, which is 
described by Pi = [Pix; Piy; Piz], is 

Di =
Nx⋅(P0x − Pix) + Ny⋅

(

P0y − Piy

)

+ Nz⋅(P0z − Piz)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N2
x + N2

y + N2
z

√ (1) 

In case of LS method, the regression plane must be determined by P0 
and N, when the sum of square of distances from the measured points 
have minimal value. The flatness error is the sum of the distance from 
the plane of the upper and lower furthest points. During the imple-
mentation of the algorithm, the problem is, how can be the best position 
of the plane found in general state, when the number of points is un-
known (or can be arbitrary). 

In case of MZ method the regression plane is determined by N, the P0 
is not important, it can be [0,0,0]. The right position of the plane is, 
when the distance between the closest and the furthest points from the 
plane is minimal. During the implementation a fast and robust search 
algorithm required in order to find the optimal position of the normal 
vector. 

The envelope method covers the measured point cloud. The plane 
must be fit to three points of the point cloud, and any other points must 
be below or above to this plane. It means two different solutions. The 
flatness error is the distance of the furthest point from the plane. The 
task is to find the three points, which ensure the smallest distance. From 
the viewpoint of the implementation this is the most complicated 
method. In case of high number of points there are several variations for 
selecting three points and evaluating the location of other points and 
calculating the distances. 

Based on the literature and the previous tests, the number of points 
has important effect on the calculated value of the flatness error. If the 

Fig. 1. Classification of point sampling methods (based on [12]).  

Fig. 2. Influence parameters of the geometric errors.  

Fig. 3. Definition of the flatness (ISO 1101).  

B. Mikó                                                                                                                                                                                                                                           



Measurement 171 (2021) 108720

3

number of sample points increases, the value of the flatness increases too 
[12], so more accurate values are achieved, but the measuring and the 
calculation process becomes time consuming. During the design of 
measuring process our aim is to decrease the uncertainty of the 
measuring and increase the accuracy. If only 3 points are measured on 
the surface, the flatness error is 0. If more points are selected, the 
selected points give better representation of the machined surface; the 
point cloud contains more information. So the value of the flatness error 
becomes larger, approaches to the real value. The “real” flatness error 
can be calculated based on point cloud, where the distance between 
neighbours goes to zero. 

The aim of the current research is to increase the accuracy of random 
or quasi random point sampling methods and reduce the measuring 
time. In the current article, the effect of the number of points is pre-
sented, and a new, regression based estimation model is introduced. 

The next chapter presents the method, materials and equipment of 
the test related to the flat surface machining and flatness measuring. 
Then the results of the measuring are described. The fourth chapter 
presents the new concept of the assessment of flatness deviation based 
on regression analysis and the verification by blind tests. The conclusion 
closes the paper. 

2. Methods and equipment 

The algorithm was tested on six machined flat surfaces of the same 
dimensions 175 mm × 155 mm. The test surfaces were machined using 
different technologies, methods and machine tools (Table 1). The test 
parts were made 42CrMo4 (1.7225) pre-hardened low alloyed steel (Rm 
= 860–1060 MPa). 

Surfaces #1 and #2 were machined in a conventional and CNC 
milling machine by zig-zag technology, with the same cutting speed and 
feed per tooth. Surfaces #3 and #4 were machined by face turning with 
the same parameters, except the feed. As for #5 and #6 surfaces, face 
milling technology was applied with the same tool and parameters, and 
with different tool path strategies. 

The coordinate values of the investigated flat surfaces were 
measured by means of Mitutoyo Crysta-Plus 544 coordinate measuring 
machine. The measurement was performed in a discrete sampling mode 
with a contact probe (tip diameter is 3 mm). Sampling was carried out in 
34 × 30 = 1020 uniformly distributed points on the examined surface. 
The reference values of the flatness error were calculated by Kotem 

SurfaceProfile v5. The reference values can be seen in the Table 2. 
During the investigation a minimum zone method was implemented 

[15], where a random hill climbing algorithm was applied for the best 
plane searching. 

3. Results 

The effect of the number of point was investigated through the 
random point method. Different number of points were selected from 
the measured 1020 points, and the values of flatness were calculated in 
case of the 6 specimens. The process was repeated 100 times and the 
average values were analysed. The number of points were 20, 30, 40, 50, 
75, 100, 125, 150, 200, 250, 350, 500, 650, 750 and 900. 

Although, the dynamic of the changing is different during the various 
test parts, but the continuous growing of the values can be observed 
(Fig. 4). This result is consistent with the literature [7,12,16]. The 
changing of the flatness in function of number of investigated points can 
be described by power function in the next form: 
FL = A⋅NoPB (2)  

where 

FL: flatness, 
NoP: number of points, 
A, B: coefficients. 

In case of 6 surfaces, the values of the coefficients can be seen in 
Table 3 (MS Excel). The quality of the regression is very good, the R2adj 
parameters are larger than 0.9. Unfortunately, the measuring process of 
1020 points takes about 45 min. 

Table 1 
Machining conditions of test samples.   

Sf#1 Sf#2 Sf#3 Sf#4 Sf#5 Sf#6 
Method Face milling Face turning Face milling 
Strategy Zig-Zag – Zig-Zag Spiral 
Machine tool UF-231 MAZAK A410-II E400-1000 MAZAK A410-II 
Type Manual CNC Manual CNC 
Dc [mm] 80 50 – 63 
z [-] 7 4 1 6 
vc [m/min] 60 (100) 180 
n [1/min] 240 382 190 910 
f; fz [mm] 0.046 0.6 0.2 0.09 
vf [mm/min] 78 70 115 40 490 
ap [mm] 1 0.5 1 
ae [mm] 40 25 – 31.5 

Dc – cutting tool diameter; z – number of teeth; vc – cutting speed; n – spindle 
speed. 
f, fz – feed, feed per tooth; vf – feed speed; ap – depth of cut; ae – width of cut. 

Table 2 
Reference values of flatness in mm.   

Sf#1 Sf#2 Sf#3 Sf#4 Sf#5 Sf#6 
FL_Ref [mm] 0.0343 0.0127 0.0427 0.0572 0.0124 0.0204  Fig. 4. Flatness in case of random point sampling in function of number 

of points. 

Table 3 
Values of coefficients of regression NoP = 20–900.  

SF# A B R2adj 
1 0.0189 0.1232 0.9397 
2 0.0064 0.1397 0.9923 
3 0.0159 0.1595 0.9457 
4 0.0185 0.1694 0.9718 
5 0.0054 0.1561 0.9775 
6 0.0111 0.0956 0.9923  
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If only 100 points are chosen, the measuring time can be reduced, but 
the measured values go far from reference values. Partial sets of points 
are investigated (NoP = 20; 30; 40; 50; 75; 100), and found, then the 
trend and regression are very similar (Fig. 5; Table 4). If the relationship 
between the regression of full and the partial sets can be found, the real 
flatness value can be estimated based on limited sets of points. Unfor-
tunately, the random point sampling method has a large uncertainty. 
The random points cannot cover the surface with appropriate density, so 
another method should be used for point sampling. 

4. Regression method of the assessment of flatness 

The similarity in regression is the base of the proposed method. The 
method consists of the following steps:  

• Measure the points’ coordinates.  
• Divide the measured points into six sets.  
• Assess the flatness error to the 1st set, then the 1st and the 2nd and so 

on, and finally to all points.  
• Calculate the coefficients of the regression model (Eq. (2)) by least 

square method.  

• Estimate the flatness by the (1) equation with NoP = 1020. 

The first question is how the limited sets of points can be selected. 
The random point sampling method has a large problem, it cannot cover 
the whole surface with same density in every case and the results of 
repeated measure with different points have a large deviation. The 
uniform coverage is not better, because in case of periodical macro and 
micro surface structure it can make false results. So the solution is the 
application of quasi-random sampling methods [12]. The Halton- 
Zeremba method was chosen, based on the literature overview. In case 
of Halton-Zeremba method the relative coordinates of the point can be 
defined as following [12,16]: 

xi =
i

NoP
(3)  

yj =
∑

k−1

j=0

bij’⋅2
(−j−1) (4)  

where 

i: the number of the points (0 to (NoP-1)) 
bij: the jth bit of the binary representation of i 
bij’: the transformed value of bij 
b’ij = bij, if j is even, 
b’ij = 1−bij, if j is odd, 

In the implementation 64 points were determined (NoP = 64) in 
order to decrease the measuring time, so i is between 0 and 63. The 
binary representation of i = 63 and the bij’ are:  

j 5 4 3 2 1 0 
bij 1 1 1 1 1 1 
bij’ 0 1 0 1 0 1  

Based on Halton-Zeremba method 64 points were defined (HZ64). The 
subdivision of point set considers the coverage of all surface. The Table 5 
and Fig. 6 shows the 6 sets of points for flatness calculation. 

In the 1st subset there are 16 points. The 2nd to 5th subsets contain 9 
points and the 6th subset contains 12 points. The selection of the points 
from Halton-Zeremba 64 points set was arbitrary, and only the equable 
covering was considered. The different way of division can be used also. 

Based on the six calculated values of the flatness, the A and B co-
efficients of regression model can be determined based on least square 
method. In case of least square method the sum of squares of differences 
have to be minimized through the model parameters. The sum of squares 
(SS) is: 

SS =
∑

6

k=1

[

FLk −
(

A⋅NoPB
k

) ]2 (5)  

where 

k: number of point sets, 
FLk: calculated flatness in case of kth calculation, 
NoPk: number of points in case of kth calculation. 
SS has minimum value, if 

Fig. 5. Flatness values in function of number of measured points.  

Table 4 
Values of coefficients of regression NoP = 20–100.  

SF# A B R2adj 
1 0.0142 0.1981 0.9369 
2 0.0058 0.1664 0.9916 
3 0.0110 0.2545 0.9629 
4 0.0141 0.2408 0.9791 
5 0.0045 0.2020 0.9796 
6 0.0094 0.1410 0.9922  

Table 5 
Point sets.  

k Point ID (i) 
1 0 1 2 3 19 20 21 22 38 39 40 41 57 58 59 60 
2 7 8 9 26 27 28 45 46 47        
3 13 14 15 32 33 34 51 52 53        
4 16 17 18 35 36 37 54 55 56        
5 10 11 12 29 30 31 48 49 50        
6 4 5 6 23 24 25 42 43 44 61 62 63      
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dSS

dA
= 0and

dSS

dB
= 0. (6) 

After the calculation 

B =
6⋅
∑6

k=1(lgNoPk⋅lgFLk) −
∑6

k=1(lgNoPk)⋅
∑6

k=1(lgFLk)

6⋅
∑6

k=1(lgNoPk)
2 −

[

∑6

k=1(lgNoPk)
]2

(7)  

lgA =
B⋅
∑6

k=1(lgNoPk) −
∑6

k=1(lgLFk)

−6
(8)  

A = 10lgA (9) 
The Fig. 7 shows the result of the presented method in case of 20 

runs. The calculated values of the flatness are different because of the 
random hill climbing method. If other method is used to evaluate the 
flatness error, the differences can be smaller or can be eliminated. The 
first (red) column shows the reference value. Comparing with the first 
columns, we can state, that the evaluation method is not as good, as we 
expected. In case of the 1st and the 3rd surfaces the differences are very 
large. The cause of this can be found in the nature of the character of the 
surfaces and in the inaccuracy of the proposed extrapolation theory. 

In order to improve the accuracy of the presented method, an addi-

tional step should be inserted. The calculated A and B coefficients must 
be modified by a modification factor: 
A’ = CA⋅A (10)  

B’ = CB⋅B (11)  

where 

A, B: the original coefficients of the power regression equation, 
A’, B’: the modified coefficients, 
CA, CB: modification factors. 

Based on Table 3 and 4, in case of the whole and partial sets of points 
the ratio of A and B coefficients are in narrow ranges (CA: 1.18–1.42 and 
CB: 0.62–0.84), so this simple modification method seems to be 
successful. 

The modification factors were determined based on 6 × 100 = 600 
runs by MS Excel Solver optimization module, where the sum of squares 
of errors was minimized. The values of the factors are CA = 1.802 and CB 
= 0.466. These coefficients ensure the smallest difference between the 
modified and the reference flatness values. 

The results of the test run with the modified assessment equation can 

Fig. 6. Point sets for calculation of flatness.  

Fig. 7. Results of test runs on 6 data sets.  
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be seen on the Fig. 8. The evaluated flatness values are closer to the 
reference values; the accuracy of the measuring process becomes more 
acceptable. Comparing with the reference values, the largest difference 
is 16 μm in case of the investigated 6 × 20 = 120 test runs. The largest 
differences are at test surface 1. The effect of the modified parameters is 
very spectacular in case of surface 1 and 3, where the differences were 
very large and the repeatability of the runs was poor. Now the repeated 
runs result almost the same flatness values for each surfaces. 

In order to verify the above presented theory, additional two milled 
surfaces were analysed, #R01 and #R02. The same size flat surfaces 
were machined by a conventional milling machine with a Dc = 125 mm 
milling head. 

Based on 1020 measured point the flatness error of R01 is 0.038 mm 
by Gauss method of the CMM software and 0.035 mm by minimum zone 
method of the CMM software. The result of the random hill climbing 
algorithm is 0.035 mm (Fig. 9). The flatness error of R02 is 0.026 mm by 
Gauss method of the CMM software and 0.024 mm by minimum zone 
method of the CMM software. The result of the random hill climbing 
algorithm is 0.024 mm. The different results demonstrate the effect of 
the flatness evaluation methods. 

Based on 64 Halton-Zeremba (64HZ) points the flatness error is 
0.026 mm and 0.020 mm by random hill climbing algorithm, which are 
smaller than the reference values (0.035/0.024 mm). But, if the pre-
sented regression method is applied, the estimated flatness errors are 
0.032 mm and 0.026, which are closer to the reference values. It can be 
concluded, that the calculated flatness error is improved by the regres-
sion method. The improvement means, that the calculated value gets 

closer to the reference value. 
The diagram on Fig. 10 shows the calculated values of 20 repeated 

runs. The results of 20 runs are little bit different, which is the nature of 
the random hill climbing algorithm, but the differences are less than 4 
and 2 μm from the reference values. 

Fig. 8. Results of test runs in case of modified method.  

Fig. 9. Values of flatness error in verification.  

Fig. 10. Results of 20 runs of random hill climbing algorithm in case of 
verification. 
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5. Conclusion 

The flatness error describes one type of the geometric deviation of a 
plane surface. The flatness error, as every geometric error, can be 
investigated from several aspects, like definition, interpretation, 
measuring, and manufacturing. 

In case of measuring the productivity (measuring time) and the ac-
curacy compete with each other. In order to reduce measuring time, a 
limited number of points should be measured, but the accuracy in-
creases, when more points are used to evaluation of geometric error. The 
suggested procedure helps to find the equilibrium between productivity 
and accuracy of the flatness measure. The changing of the flatness in 
function of number of investigated points can be described by power 
function. The power function is able to improve the calculated flatness 
value. 

The equable covering of the investigated surface can be ensured by 
quasi random point sampling methods. In the current research the 
Halton-Zeremba method is suggested with 64 points. After the 
measuring process the evaluation consist of the next steps (Fig. 11):  

• Define the flatness error to six subsets, where every subset is part of 
the next.  

• Generate the regression curve as power function to these six values.  
• Modify the coefficients of the regression model based on previous 

tests.  

• Use extrapolation in order to evaluate the real value of the flatness 
error. During the extrapolation, the theoretical number of points 
have to be considered. 

In the article the application of this regression method is presented, 
and demonstrated through independent examples. The suggested 
method ensures fast measuring process thanks to the small number of 
measured points, and decreases the error of the result thanks to the 
extrapolation method. 

In case of general use of the method, the definition of “real” flatness 
error, and the reference density of points, and the size of the surface are 
important questions, which need more investigation. 

In the future result some details can be investigated, like the gener-
ation of subsets, the size of the investigated plane or the effect of the 
nature of the machined surfaces. The further aim is to interpret the 
method in case of other type of geometric tolerances, like circularity or 
roundness. 

CRediT authorship contribution statement 
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[8] S. Lakota, A. Görög, Flatness measurement by multi-point methods and by scanning 
methods, Ad-Alta J. Interdisciplinary Res. 1 (1) (2011) 124–127. 

[9] D. Moulai-khatir, E. Pairel, H. Favrelier, Influence of the probing definition on the 
flatness measurement, Int. J. Metrol. Qual. Eng. 8 (2018) 15, https://doi.org/ 
10.1051/ijmqe/2018011. 
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B. Mikó                                                                                                                                                                                                                                           

https://doi.org/10.2478/msr-2013-0018
https://doi.org/10.17559/TV-20190603084835
https://doi.org/10.17559/TV-20190603084835
https://doi.org/10.1016/0278-6125(95)98871-3
https://doi.org/10.1016/0278-6125(95)98871-3

	Assessment of flatness error by regression analysis
	1 Introduction
	2 Methods and equipment
	3 Results
	4 Regression method of the assessment of flatness
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


